
Image Recognition in Swachh Bharat Urban Mission Mobile Photo Uploads by Citizens - Proof of Concept

Attempt was made on Object Detection (Toilet Seat) & Image Detection (Beneficiary in Geo Tagged Toilet Photos) for 65574 Training Data Set of One month data of Swachh Bharat mission (Urban) Online.

Concept of Image Recognition Process -

The Images Collected is preprocessed for color, brightness etc..also images are cropped, resized etc..to have same size and aspects ratio. Next is Feature description like edge detection, corner detection etc.. then feature extraction using different computer vision algorithms resulting in a feature descriptor or feature vector and then using classifier algorithm to detect the image provided into a category like cat, dog etc.. This is the process used by Machine Learning.

For Deep Learning Convolutional Neural Network does the job of both Feature Encoding and Classification.

The Constructed Toilet Seat Image Data was each 65 KB only each. Machine learning was done and data Classified with Following Results:

1. KNN & SIFT Algorithm used with features =30 For Toilet Detection.

Training DataSet With Toilet	Number of Parameters Threshold for Machine Learning	Predicted: Toilet Found = Y	Predicted: Toilet Found=Y Checked Sample Size=100 48% correct	Predicted: Toilet Found=N Checked Sample Size=100 55% correct	Remarks As Pre-
Web Images as Training Set					trained Classifier Model was not available for toilets, result was poor.
With Toilet Web Images as Training Set	20	35597	85% improvement in correct prediction of another sample where ML Predicted = N with parameter 30		
With Toilet Images classified Wrongly, Added to Training Set	30	40842	88% improvement in correct prediction of another Sample where ML Predicted = N with parameter 30	another	Algorithm Learnt & results improved.
Deep Learning with Neural Network	Completed		96% accuracy obtained		Training Done with 5 lac records

2. HAAR Cascade Frontal Face Default classifier used with features encoded =30 for Human face Detection.

Training	Number of	Predicted	Predicted :	Predicted :	Remarks
DataSet	Parameters	: Human	Human Face	Human Face	
	Threshold	Face	Found =Y	Found =N	
	for	Found = Y	Checked	Checked	
	Machine		Sample	Sample	
	Learning		Size=100	Size=100	
With	30	32081	100% Correct	28% Correct	
Human					
Web					
Images as					
Training					
Set					

With	20	27797	60%	1%	As Trained
Human			improvement	improvement	Human
Web			in correct	in correct	Images
Images as			prediction of	prediction of	from Web
Training			Another	Another	are in
Set			sample where	sample where	millions,
			ML Predicted	ML Predicted	parameter
			= N with	= N with	30 is
			parameter 30	parameter 30	optimal
Deep	Completed		96% Model		POC done
Learning			accuracy		with 5 lac
with			obtained		records
Neural					
Network					

