

COE-AI@NIC

Name Matching Across Datasets
-

Text Analytics Model
Proof of Concept

By
Centre of Excellence in Artificial Intelligence

National Informatics Centre
July 2020

COE-AI@NIC Page 2

Table of Contents

1. Objective of the Exercise : .. 3

2. Challenges in Name Matching : .. 3

3. Data Exploratory Analysis : ... 4

4. Dataset Pre-Processing : ... 7

 i. Attributes Extraction. .. 7

 ii. Data Cleaning ... 7

 iii. Encoding Generation ... 9

5. Building ML-Pipeline : ... 10

 a. Candidate pair Generation. .. 10

 b. Features Generation .. 10

 c. Training the Model ... 12

6. Machine Learning : .. 13

 a. Initial Model ... 13

 b. Final Model .. 16

7. Future Work : ... 19

COE-AI@NIC Page 3

1. Objective of the Exercise:

Personal records across datasets usually is non standardized. Given two names,
Objective is to the similarity between them so that information across datasets can
be consolidated. With that in mind for farmer records across different schemes in
Government of India were subject of similar name checking using a few attributes
that might match across datasets like state, district, village etc.. and others more
personal identity like date of birth or age, gender, ID No. like Aadhar if available etc..

Farmer Name Datasets & Land Records(LR) Dataset were provided from Gujarat,
Maharashtra, Odisha & UP. Land records data was in regional languages and was
translated to English using phonemes. It was to be compared with PM Fasal Bima
Yojana, PM Kisan and Soil Health Card where the names were in English, with the
objective of consolidating Farmer records across datasets.

2. Challenges in Name Matching across datasets :

Name-matching is the difficult task due to following variants:-

(a) Phonetics Similarity

Same name can be written in different forms.

e.g Sourabh, Saurab, Sorav

Avinash, Abhinash

Vikas, Bikash

(b) Missing Space

Name may/may not have space between them

e.g Vinit kumar, Vinitkumar,

 Ram Samantaray, Ram Samant Ray

(c)Missing Components

Some times some part of name is not present.

e.g Ravi Singh Chouhan, Ravi Chouhan

Ravi lal Singh, Ravi Singh

P Arun, Arun

(d) Out of order Components

Dataset may have either Surname first or last

e.g. Kumar Swami Iyer, Swami Kumar Iyer, Iyer Swami

COE-AI@NIC Page 4

(e) Initials/Full-name

Name can be written in various form by replacing them with initials

e.g. S B Singh, Shyam Bharti Singh, Shyam B Singh, S Bharti Singh etc

(d) Prefix/Suffix:

Name can have suffix/prefix added, though it may/may not be part of name

e.g Mr, Shri, Ms , ji, Bhai, Ben, Bai, Bhau, Dei, Dada, kumar, kumari etc

Some time they are also part of name e.g Jijabai, Ritaben, Fulkumari etc..

(e) Maximum Part Matching

Two different name can have more matching than Two simmilar names

e.g. Ram Kumar Bandopadhya, Ravi Kumr Bondopadh:

Here names are of different person but their similarity scores will be high as large

fraction of name matches.

These challenges often comes together making name matching more tricky. For

modelling , we will need the dataset capturing all these variety.

3. Data Exploratory Analysis :

Initially data of Land Record, PMFBY, PMKISAN of few villages of UP, Maharashtra &

Odisha each was given. Later Land Record (LR), PMFBY, PMKISAN and Soil Record of

Gujarat was provided. Datasets were analysed for finding missing values, unique

values, common attributes etc. Some examples are given in Figure 1 & Figure 2.

 Figure 1 - Some common/ similar Attributes in Odisha PM_KISAN & Land Record

COE-AI@NIC Page 5

Figure 2 - Venn Diagram: Adhaar No. distribution of PMFBY & PMKISAN of Odisha

On analysis it was found that there is no matching of Survey number, land division

number between 2 dataset(LR & PMFBY).

We found that matching can be done on the basis of Name, location (village-code /

block-code / district-code / state-code) & gender only as other field are either data

missing or not available.

For Matching Names we needed positive and negative samples.

Positive Samples:
Samples obtained from PMFBY (PM Fasal Bima Yojana) & PMKISAN based on same

Aadhar Number were extracted. From these samples, manual checking of similarity

and labelling was done. This step generated mostly Positive samples and a few

wrong ones.

Negative Samples:
Other then Aadhar based matching, for matching with records which did not have
aadhar, other attributes such as location (codes) & gender which can be compared
easily were used, and then we only required method to compare names. Fuzzy
Name Matching using Machine learning was used. Farmer Names From PMFBY &
PMKISAN were extracted and compared with each other on the basis of fuzzy
phonetic similarity (Soundex).

Preparing Negative Samples is a difficult task as the sample must be representative

of its entire distribution for effective ML modelling.

COE-AI@NIC Page 6

Negative Samples was generated in following steps:

1.Name-pairs were generated by pairing every unique names in our dataset. This

generated a lots of pairs.

2. To facilitate manual labelling and to have dataset of wide-variety, the fuzzy-

soundex-similarity score was calculated on these pairs.

This made manual labelling name-pair easier as :

(a) pairs having low fuzzy-soundex-similarity (<60) can be labelled as 'not same' by

mere looking .

(b) pairs having fuzzy-soundex-similarity (>60 and <95) required more attention in

labelling.

(c) pairs having fuzzy-soundex-similarity (>95) are mostly equal and can be labelled

'same' easily.

 Following is the final generated dataset distribution

Fig.3 - graph denoting distribution of samples on the basis of simm: fuzzy phonetic
similarity (Soundex). X Axis : fuzzy-soundex-similarity & Y Axis : #name-pairs

On Initial datasets, sample data check carried out shows a left tailed distribution.
Since most of the sample name-pairs were clustered with similarity score between
0.85-1, we get large number of positive name-pairs having high fuzzy-soundex-
similarity. So the distribution showed that further work can be carried out.

COE-AI@NIC Page 7

4. Data Pre-Processing :

Following steps were performed for cleaning the name attributes in the datasets.

i. Attributes Extraction –
Extract Name with attributes like village code, gender, Father Name from Database-
1. Do same for Database-2

ii. Data Cleaning –

It includes:
(a) Making Names lower case. Removing unnecessary characters like .(dot),/,- etc.
(b) Name of Certain Region contains suffix e.g.

 In Maharashtra: Bhau, Rao
 In Gujarat: Bhai, Ben
 In North India: Kumar, ji

these can be removed as these suffix increase matching scores. Common
Suffixes can be found using analytic or manually input

 (c) Standardizing Village code, Gender etc..

(A) Name cleaning

 remove numeric words and special characters

 lowercase all character

(B) Stop-word Removal

 Salutation removal e.g smt, shri, mr, dr, ms etc
 common word removal e.g. 'bhai', 'bhau', 'bhoi', 'bai', 'kumar', 'kumr', 'kmr',

'ben', 'dei', 'devi', 'debi',kumaar'
 common suffix removal from word. e.g 'saheb', 'kumar', 'kumaar', 'bhai',

'bhau', 'bai', 'ben', 'bai','sab'

(C) Name Standardization

Names are standardized according to Indian context.

1. Replace e by I (इ, ई):
e.g. eshwar → ishwar,

2. Replace adjacent similar character by single character
e.g. raaghaav → raghav

COE-AI@NIC Page 8

3. replace Unigrams:
v → w
j → z
q → k

e.g.
raghav → raghaw
vinod → winod
rav → raw
jakir → zakir
quran → kuran

4. replace bigrams :
ph → f
th → t
dh → d
sh → s
ck → k
gh → g
kh → k
ch → c
e.g.
phogat → fogat
yatharth → yatart
parth → part
dhoni → doni
harish → haris
wickas → wikas
raghaw → ragaw
khaton → katon
choubey → coubey

5. Replace(ह):
ah → h
e.g. allah → alh
 maharana → mharana

6. Remove a if previous char is not i,o,u (consonant + a = consonant)
 e.g. mharana → mhrn

COE-AI@NIC Page 9

(D) Common part removal
 Name pairs is split on space and common word is removed.
 e.g Ram Manohar Singh → rm mnohar sing →rm
 Syam Manohar Singh → sym mnohar sing → sym

iii. Encoding Generation -
Generating small length encoding of names capturing phonetic property. Used
Modified Soundex for Encoding Generation.

(a) Modified Soundex for Indian context-

 Soundex is modified for improving the matching.

 encoding: alphabets

 0: 'aeiouvyhw',

 1: 'kgqc',

 2: 'cj',

 3: 'td',

 4: 'jzx',

 5: 'm',

 6: 'pfbwv',

 7: 'l',

 8: 's',

 9: 'r',

 '!': 'n',

e.g. ramesh chandra swain → rms cndr swn{{'958'},{'1!39', '2!39'}, {'8!', '86!' }}

(b) common soundex encoding is removed.

e.g. Name1: {{'958'},{'19', '2!39'}, {'8!', '86!' }} → {{'958'}, {'8!', '86!' }}

 Name2: {{'58'},{'2!39', '3!39'}, {'5!', '6!' }} → {{'58'}, {'5!', '6!' }}

 '2!39' is common in both name, so common encoding set is removed as shown.

COE-AI@NIC Page 10

iv. Machine Learning Pipeline:

Different algorithms were explored for calculating the names similarity distance
score. Entire Process is divided into 2 passes:

Pass – 1:
This Pass generates candidate pairs from the input Database. As there lacs of records
every record in each dataset, all combinations cannot be checked directly.

Pass – 2:
After getting candidate pairs from Pass-1, applies ML model for classification

Steps followed :

a. Candidate Pair Generation -
If we directly do cross product of names in 2 Name-list we will get a huge no. of
candidates. e.g. If 2 Databases are of size 50K, we will get 250 crore name pairs,
which will make features generation and name matching process time consuming.

So we filter the name on the basis of Village code, Gender etc. across datasets. It is
less computationally intensive matching algorithm with low threshold applied to
further reduce candidate pairs.

e.g. 2 names are compared only if they belong to same village.

Fuzzy soundex with threshold of 50 was used to get candidate pairs. JaroWinkler can
be used as it has less computation complexity.

b. Features Generation –
Similarity Scores of different algorithm such as Jaro-Winkler, Jaccard, Cosine
similarity etc was generated. Various string similarity measures are analyzed both on
raw names as well as processed names. Some of these measures analysed were :-
Edit based:

 Hamming

 MLIPNS

 Levenshtein

 Damerau-Levenshtein

 Jaro-Winkler

COE-AI@NIC Page 11

Token based :

 Jaccard index

 Overlap coefficient

Sequence based:

 longest common subsequence similarity

 longest common substring similarity

 Ratcliff-Obershelp similarity

Simple:

 Prefix similarity

Postfix similarity

 Length distance

 Identity similarity

 Matrix similarity

Phonetic:

 Soundex Similarity

Figure 4 – A few samples showing different String Similarity Measures

COE-AI@NIC Page 12

c. Training the Model –

The trained model will predict the pairs are similar or not based on above features.

PASS – 1

PASS – 2

Figure 5 : Dataflow Pipeline for Name Similarity Matching

 PREPROCESS PREPROCESS

 CANDIDATE PAIR GENERATION

 ENCODING

 GENERATION
 ENCODING

 GENERATION

 FEATURES GENERATION

 CANDIDATE PAIRS

 MODEL PREDICTION

 Name List – I

 (with Attributes)

 Name List – II

 (with Attributes)

COE-AI@NIC Page 13

v. Machine Learning:

To improve model accuracy, XGBoost, a Gradient boosting algorithm was used on
these similarity metrices scores.

XGBoost
XGBoost is an optimized distributed gradient boosting library designed to be highly
efficient, flexible and portable. It implements machine learning algorithms under the
Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known
as GBDT, GBM) that solve many data science problems in a fast and accurate way.

Gradient boosting is a machine learning technique for regression and classification
problems, which produces a prediction model in the form of an ensemble of weak
prediction models, typically decision trees. It builds the model in a stage-wise
fashion like other boosting methods do, and it generalizes them by allowing
optimization of an arbitrary differentiable loss function.

a. Initial Model -
In Initial model pipeline, in phase I only name cleaning was done. These names were
fed to similarity measure as shown to generate features. These features are input to
XGBOOST Algorithm.

Training Parameters (Default):

base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,
nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0,
reg_lambda=1, scale_pos_weight=1, seed=None, subsample=1

Data set was randomly divided into 60% ,40% for trainset & testset respectively

Metrics used for the XGBoost Algorithm – f(i)

 'Jaro-Winkler',
 'Damerau-Levenshtein',
 'MLIPNS',
 'Hamming',
 'Overlap',
 'Jaccard',

COE-AI@NIC Page 14

 'LCSSeq',
 'LCSStr',
 'Ratcliff-Obershelp',
 'Soundex_prune',
 'Soundex_simple',
 'Prefix',
 'Postfix',
 'Length',
 'fuzzywuzzy'

Result on UP, Maharashtra & Odisha dataset (Small dataset) by Initial Model.

Accuracy: 99.68%

precision_score : 0.9971783295711061

recall_score : 0.9979667909183327

confusion_matrix:

[[4732 25]

 [18 8835]]

f1_score: 0.99757240444871

Figure 6: precision & recall vs threshold

High Precision & Recall on a small variuant of regional dataset doesn’t mean that it
will extrapolate well to All India Data having different regional nuances. However,
High precision & recall for a district within a state will scale well to the entire state.

COE-AI@NIC Page 15

Figure 7: Correlation between the different metrics

Figure 8: one of the Decision Tree in XGBoost, fi denote the ith metrics as above

Limitation:
However model was not able to perform well on huge Gujarat Dataset as model had

not considered all variants of namepair that may exist in regional datasets. To solve

this whole pipeline was redesigned to account the challenges in name matching.

COE-AI@NIC Page 16

Modified Soundex algorithm result -
Alternately Modified Soundex algorithm was also tried & not taking any other
similarity measures.

Similarity Threshold:0.80
Accuracy: 98.41%
precision_score : 0.990236148955495
recall_score : 0.9852027561278662
confusion_matrix: [[4671 86]
 [131 8722]]
f1_score: 0.9877130400317083

Result:

 XGBoost model performed slightly better than Modified Soundex algorithm.
Minute increase (~1%) in XGBoost model accuracy & F1 score with increase in
complexity. However this is dependent on dataset available.

Limitation:
 Dataset is skewed. Better the data better will be model
 Other string similarity metrics can also be added to increase further accuracy
 Much slower than Modified Soundex algorithm. Some metrics can be

eliminated\ dimension reduction techniques can be used to speed up the
processing

b) Final Model -
Following were the features generated by using selected Similarity Measures in the

final model.

'SOUNDEX_SIMM':

all combination of soundex encoded name pair are generated and compared using

Radclif-Obershelp similarity

'SOUNDEX_PARTIAL_SIMM':

all combination of soundex encoded name pair are generated and shorter name is

compared with clipped longer name of same length using Radclif-Obershelp

similarity.

COE-AI@NIC Page 17

'PARTIAL_MATCH_NAME':

all combination of standardized name pair are generated and shorter name is

compared with clipped longer name of same length using Radclif-Obershelp

similarity

'JARO_WINKLER_ONNAME':

 Jaro-winkler similarity is applied on all permutation of standardized name pair and

maximum value is written

'UNCOMMON_SNDX_LN':

 length uncommon soundex of shorter name

'DLVNSTEIN':

 Damerau–Levenshtein similarity on standardized name pair is calculated

UNCOMMON_SNDX_LN_RATIO

ratio of uncommon shorter soundexed string and uncommon longer soundex string

SUBSEQUENCE SIMILARITY:

Longest common subsequence is computed on standardized name to calculate sub

sequence similarity.

Parameter Tuning:

Parameter Tuning was done by doing grid search on following values:

params = {

 'min_child_weight': [1, 5, 10],

 'gamma': [0.5, 1, 1.5, 2, 5],

 'subsample': [0.6, 0.8, 1.0],

 'colsample_bytree': [0.6, 0.8, 1.0],

 'max_depth': [3, 4, 5]

 }

COE-AI@NIC Page 18

Best Model found parameters:

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,

 colsample_bynode=1, colsample_bytree=1.0, gamma=2,

 learning_rate=0.1, max_delta_step=0, max_depth=4,

 min_child_weight=10, missing=None, n_estimators=100, n_jobs=1,

 nthread=None, objective='binary:logistic', random_state=0,

 reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,

 silent=None, subsample=0.6, verbosity=1)

Result :

 Figure 9 : Sample showing different similarity metrices used in XGBoost

COE-AI@NIC Page 19

Figure 10: Sample results of farmers’ names match across datasets

7. Future Work –

1. User interface can be made, through which:

 (a) Degree of recall and precision can be controlled.

 (b) Challenges/variants in name can be relaxed or increased

 e.g. we can remove or add setting for prediction of out of order names such

as bhola ravi, ravi bhola

(c) Some exception-rules / stop-words / salutation etc. can be added or

removed.

e.g. in Maharashtra people frequently use Bhau. Such rule can be added to

make predicitons more accurate as per the regions.

COE-AI@NIC Page 20

2. Better similarity features can be explored and implemented.

3. Deep learning based techniques (Siamese network, LSTM etc) can be used –

work has been started on this aspect also to check out performance improvement by

letting the system do the feature engineering by itself using millions of records

available in the datasets, to overcome the limitation having to finetune the model

parameters manually according to regional datasets.

This will form the POC of Name Similarity Search Deep learning Exercise in future.

