NIC TECHGOV-2020

'AI-IDEATHON' National level Challenge for NICians

AI based Tax Fraud Detection

T Edward Sam, Senior Technical Director Arun Sankar, Technical Director Arun K Varghese, Senior Systems Analyst Ankith Kirti, Systems Analyst

Objectives

- Identify suspicious taxpayers likely to evade tax
- Estimate the amount of tax that could be recovered
- Provide the suspicious taxpayer list for scrutiny, assessment and issue of notices and recovery
- Compare the identified suspicious list with the actual list of confirmed tax evaders

Python and open source AI Libraries and Algorithms

- Al Libraries used
 - Sklearn
 - Pandas
 - > Plotly
- Al algorithms used of clustering:
 - ⊳ DBSan
 - K-Mediods
 - K-Means
 - Silhouette scoring

- Fraud Detection
 - ▷ Graph based weighted MAD
 - Benford Analysis

Base Data for Clustering

- Identified 7 key base data fields from monthly GST return filing for correlation analysis
 - Total SGST Liability
 - ▷ Total CGST Liability
 - Total Liability
 - ▷ Total ITC available
- Identified 5 major business sectors for independent study
 - Gold Description Steel Description Textile
 - Timber
 Vehicle

- ▷ Total IGST ITC
- Total SGST paid by cash
- ▷ Total Exempt Sales

Base Data Sample

	gstin	month	year	total_sales_amount	total_sgst_paid_by_cash
0	ABBBBBBB0079N1ZU	7	2,017	53530.0	0.0
1	ABBBBBBB0079N1ZU	8	2,017	97376.6	0.0
2	ABBBBBBB0079N1ZU	9	2,017	75530.0	21950.0
3	ABBBBBBB0079N1ZU	10	2,017	143321.6	0.0
4	ABBBBBBB0079N1ZU	11	2,017	540785.0	11035.0
	total_intra_stat	e_sales	total	inter state sales	total_gst_paid_by_cash
0		53530.0		0.0	0.0
1		97376.6		0.0	0.0
2		75530.0		0.0	25925.0
3	1	43321.6		0.0	0.0
4	5	40785.0		0.0	11035.0

Base data for Benford Analysis

Business to business invoice data from GSTR-1 return

	gstin	ctin	invoice_value
0	ABBBBBB070BB1ZB	06BBGCB9961P1ZX	8,054
1	ABBBBBBB070BB1ZB	BABDJFS9A71G1ZR	1,07,125
2	ABBBBBBB070BB1ZB	B7BBBCR4849R1ZL	4,065
3	ABBBBBBB070BB1ZB	B9BNOPL6798H1Z0	73,142
4	ABBBBBBB070BB1ZB	ABBBBCS90ABR1Z0	8,21,440

Approach

7

- Step 1: Identifying important sectors
 - ⊳ Gold
 - Timber
 - Vehicle
 - Steel
 - Textiles

MICTECHGOV-2020 MI-DEATHON National level Challenge for NICians

Step 2: Identifying important parameter

- > Total Sales Amount
- > Total SGST liability
- Total CGST liability
- Total Liability
- ▷ Total SGST paid in cash
- Total Exempt sales
- > Total ITC
- > IGST ITC

- Step 3 : Extraction and cleaning of sector-wise data from July-2017 to Dec-2019 (30 months)
- Step 4 : Heat map analysis to identify parameter pairs with high overall correlation (for each sector)

- Step 5 : Calculate Pearson's correlation coefficient between the pairs identified
 - Calculated for all taxpayers using period wise data for 30 months
 - The Pearson correlation coefficient measures the linear relationship between two datasets.
 - It varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship.
 - Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.

- Step 6 : Taxpayer clustering based on the correlation coefficients
 - ⊳ DBSan
 - K-Mediods
 - K-Means

Feature Correlation Heatmap

total_sales_amount	- 1	0.73	0.73	0.73	0.046	0.022	0.43	0.11	- 1.0
total_sgst_liability	- 0.73	1	1	1	0.05	0.026	0.76	0.23	- 0.8
total_cgst_liability	- 0.73	1	1	1	0.05	0.026	0.76	0.23	
total_liability	0.73	1	1	1	0.05	0.026	0.76	0.23	- 0.6
total_itc_available	- 0.046	0.05	0.05	0.05	1	1	0.025	0.015	- 0.4
total_igst_itc	- 0.022	0.026	0.026	0.026	1	1	0.014	0.0039	
total_sgst_paid_by_cash	- 0.43	0.76	0.76	0.76	0.025	0.014	1	0.051	- 0.2
total_exempt_sales	- 0.11	0.23	0.23	0.23	0.015	0.0039	0.051	1	
	total_sales_amour	nt total_sgst_liability	otal_cgst_liability	total_liability	total_itc_available	total_igst_itc	al_sgst_paid_by_c	ash otal_exempt_sales	5

12

- -

Data used for clustering

Pearson coefficients were calculated form base data

- Val1 = Total sales amount vs Total sales amount
- Val2 = Total GST liability Vs. Total SGST liability
- Val3 = Total SGST liability Vs. Total SGST paid in cash
- Val4 = Total sales amount Vs. Total SGST paid in cash
- Val5 = Total sales amount Vs. Total Exempt sales
- Val6 = Total Liability Vs. Total ITC
- ▷ Val7 = Total ITC Vs. IGST ITC

Sample Pearson Coefficient Data

	ID	val1	val2	val3	val4	val5	val6	val7
0	0.0	1.000000	1.0	0.00000	0.000000	0.0	1.000000	0.962045
1	1.0	0.995825	1.0	0.344852	0.369157	0.0	0.995825	0.851585
2	2.0	0.999997	1.0	0.941790	0.941638	0.0	0.999997	0.623610
3	3.0	0.983462	1.0	0.000000	0.000000	0.0	0.983462	0.084125
4	4.0	0.442941	1.0	0.812662	0.218818	0.0	0.442941	0.284484

Cluster Analysis on Timber Sector data

0.5

0

-0.5

-1

Cluster Analysis on Vehicle Sector data

Cluster Analysis on Textile Sector data

Cluster Analysis on Steel Sector data

18

Cluster Analysis on Gold Sector data

0

-0.2

-0.4

-0.6

-0.8

 $^{-1}$

Cluster Analysis Results

Gold Sector	Cluster 1	Cluster 2	Total
No. of observations	4677	78	4755
Steel Sector	Cluster 1	Cluster 2	Total
No. of observations	5434	51	5485
No. of observations Vehicle Sector	5434 Cluster 1	51 Cluster 2	5485 Total

Textile Sector	Cluster 1	Cluster 2	Total
No. of observations	861	22	883

Timber Sector	Cluster 1	Cluster 2	Cluster 3	Total
No. of observations	5458	264	418	6140

- Step 6 : Validation of clustering results
 - Silhoutte score was used as a metric for cluster validation
 - Estimated average distance between clusters
 - Silhouette Coefficient for a sample is (b a) / max(a, b)

Clustering Algorithm		Timber	Gold	Steel	Vehicle	Textile
Silhouette	DBScan	0.75	0.87	0.90	0.90	0.85
score	K-Means	0.68	0.44	0.48	0.57	0.49
	K-Mediods	0.35	0.48	0.37	0.53	0.34

Step 6 : Benford Analysis

Benford's law, also called the Newcomb–Benford law, is an observation about the frequency distribution of leading digits in many real-life sets of numerical data. The law states that in many naturally occurring collections of numbers, the leading significant digit is

likely to be small.

d	P(d)	Relative size of $P(d)$
1	30.1%	
2	17.6%	
3	12.5%	
4	9.7%	
5	7.9%	
6	6.7%	
7	5.8%	
8	5.1%	
9	4.6%	

Benford Analysis

Mean Absolute Deviation (MAD) is the measure we used to evalute the conformity to Benford's Law.

Mean Absolute Deviation
$$=\frac{\sum_{i=1}^{K}|AP - EP|}{K}$$

According to research values greater than 0.012 are said to be non- conformal to Benfords law.

Benford Analysis – Timber Sector

Cluster-1: 5458 (Conformant to Benford)

Cluster-2: 264 (Suspicious)

Dat		a	Benio	ra	Difference		
n	Freq	Pct	Freq	Pct	Freq	Pct	
1	904	29.89	910	30.10	-6	-0.21	
2	580	19.18	532	17.60	48	1.58	
3	349	11.54	378	12.50	-29	-0.96	
4	315	10.42	293	9.70	22	0.72	
5	247	8.17	239	7.90	8	0.27	
6	198	6.55	203	6.70	-5	-0.15	
7	132	4.37	175	5.80	-43	-1.43	
8	140	4.63	154	5.10	-14	-0.47	
9	152	5.03	139	4.60	13	0.43	
ust	er One: 0	.00690388	007054673	8			

1 1		a	Benford		Difference	
n	Freq	Pct	Freq	Pct	Freq	Pct
1	3	30.00	3	30.10	-0	-0.10
2	3	30.00	2	17.60	1	12.40
3	2	20.00	1	12.50	1	7.50
4	0	0.00	1	9.70	-1	-9.70
5	1	10.00	1	7.90	0	2.10
6	0	0.00	1	6.70	-1	-6.70
7	0	0.00	1	5.80	-1	-5.80
8	0	0.00	1	5.10	-1	-5.10
9	1	10.00	0	4.60	1	5.40

Benford Analysis – Timber Sector

Cluster-2: 418(Suspicious)

		Dat	ta	Benfo	ord	Difference				
n		Freq	Pct	Freq	Pct	Freq	Pct			
1		9	32.14	8	30.10	1	2.04			
2	Í	4	14.29	5	17.60	-1	-3.31			
3	İ.	3	10.71	4	12.50	-0	-1.79			
4	i	6	21.43	3	9.70	3	11.73			
5	Í.	2	7.14	2	7.90	-0	-0.76			
6	i	2	7.14	2	6.70	0	0.44			
7	İ	1	3.57	2	5.80	-1	-2.23			
8	ĺ.	0	0.00	1	5.10	-1	-5.10			
9	Í	1	3.57	1	4.60	-0	-1.03			
clus	ter	three	: 0.031587	7301587301	159					
clus	ter	member	cs: 418							

Benford Analysis – Steel Sector

Cluster-1: 5434 (Conformant to Benford)

Cluster-2: 51 (Suspicious)

- 4	Dat	a	Benfo	rd	Diffe	rence
n	Freq	Pct	Freq	Pct	Freq	Pct
1	7395	29.94	7434	30.10	-39	-0.16
2 1	4275	17.31	4347	17.60	-72	-0.29
3	3075	12.45	3087	12.50	-12	-0.05
4	2395	9.70	2396	9.70	-1	-0.00
5	2022	8.19	1951	7.90	71	0.29
5	1649	6.68	1655	6.70	-6	-0.02
7	1472	5.96	1432	5.80	40	0.16
8	1276	5.17	1260	5.10	16	0.07
)	1126	4.56	1136	4.60	-10	-0.04
	er One: 0	00119640	262200086	9		
ac	er one: o	.00119040	202200000	3		

- 1	Dat	Data		Benford		Difference	
1	Freq	Pct	Freq	Pct	Freq	Pct	
1	6	27.27	7	30.10	-1	-2.83	
2	3	13.64	4	17.60	-1	-3.96	
3	2	9.09	3	12.50	-1	-3.41	
4	4	18.18	2	9.70	2	8.48	
5	4	18.18	2	7.90	2	10.28	
6	1	4.55	1	6.70	-0	-2.15	
7	1	4.55	1	5.80	-0	-1.25	
8	1	4.55	1	5.10	-0	-0.55	
9	0	0.00	1	4.60	-1	-4.60	

Benford Analysis – Vehicle Sector

Cluster-1: 3920 (Conformant to Benford)

Cluster-2: 50 (Suspicious)

1	Dat	a	Benford		Difference	
n	Freq	Pct	Freq	Pct	Freq	Pct
1	1389	30.10	1389	30.10	0	0.00
2	810	17.56	812	17.60	-2	-0.04
3	577	12.51	577	12.50	0	0.01
4	419	9.08	448	9.70	-29	-0.62
5	393	8.52	365	7.90	28	0.62
6	269	5.83	309	6.70	-40	-0.87
7	299	6.48	268	5.80	31	0.68
8	259	5.61	235	5.10	24	0.51
9	199	4.31	212	4.60	-13	-0.29
ust	er One: 0	.00404585	079227472	25		

ιİ	Freq	Pct	Freq	Pct	Freq	Pct
				20.10.1		
8 B.	10 1	34.48	9	30.10	1	4.38
	10	34.48	5	17.60	5	16.88
	0	0.00	4	12.50	-4	-12.50
	2	6.90	3	9.70	-1	-2.80
1	2	6.90	2	7.90	-0	-1.00
	0	0.00	2	6.70	-2	-6.70
1	1	3.45	2	5.80	-1	-2.35
1	4	13.79	1	5.10	3	8.69
61	0	0.00	1	4.60	-1	-4.60
	4 0	13.79 0.00	1	5.10 4.60	3 -1	8 -4

Benford Analysis – Gold Sector

Cluster-1: 4677 (Conformant to Benford)

Cluster-2: 78 (Suspicious)

- 1	Dat	a	Benfo	rd	Difference	
n	Freq	Pct	Freq	Pct	Freq	Pct
1	1496	29.62	1520	30.10	-24	-0.48
2	906	17.94	889	17.60	17	0.34
3	603	11.94	631	12.50	-28	-0.56
4	483	9.56	490	9.70	-7	-0.14
5	471	9.33	399	7.90	72	1.43
6	324	6.42	338	6.70	-14	-0.28
7	295	5.84	293	5.80	2	0.04
8	248	4.91	258	5.10	-10	-0.19
9	223	4.42	232	4.60	-9	-0.18
ust	er One: 0	.00404180	418041804	3		

	Dat	a	Benford		Difference	
n	Freq	Pct	Freq	Pct	Freq	Pct
1	3	21.43	4	30.10	-1	-8.67
2	1	7.14	2	17.60	-1	-10.46
3	1	7.14	2	12.50	-1	-5.36
4	2	14.29	1	9.70	1	4.59
5	2	14.29	1	7.90	1	6.39
6	2	14.29	1	6.70	1	7.59
7	1	7.14	1	5.80	0	1.34
8	2	14.29	1	5.10	1	9.19
9	0	0.00	1	4.60	-1	-4.60

Benford Analysis – Textile Sector

Cluster-1: 861 (Conformant to Benford)

Cluster-2: 22 (Suspicious)

_ !	Data		Benrord		Difference	
n	Freq	Pct	Freq	Pct	Freq	Pct
1	395	30.86	385	30.10	10	0.76
2	244	19.06	225	17.60	19	1.46
3	176	13.75	160	12.50	16	1.25
4	114	8.91	124	9.70	-10	-0.75
5	95	7.42	101	7.90	-6	-0.48
6	80	6.25	86	6.70	-6	-0.45
7	46	3.59	74	5.80	-28	-2.21
8	71	5.55	65	5.10	6	0.45
9	59	4.61	59	4.60	0	0.01
ust	er One: 0	.00872916	666666667			

1	Data		Benford		Difference	
n	Freq	Pct	Freq	Pct	Freq	Pct
1	3	42.86	2	30.10	1	12.76
2	1	14.29	1	17.60	-0	-3.31
3	2	28.57	1	12.50	1	16.07
4	0	0.00	1	9.70	-1	-9.70
5	0	0.00	1	7.90	-1	-7.90
6	0	0.00	0	6.70	-0	-6.70
7	1	14.29	0	5.80	1	8.49
8	0	0.00	0	5.10	-0	-5.10
9	0	0.00	0	4.60	-0	-4.60

Usability of Model

- Sector wise suspicious dealer list shall be provided to department
- Prioritization of assessment based on results
- Tuning the model to improve accuracy based on feedback
- Development and integration of the AI module in GST backend for future analysis

Thank You

