
COE-AI@NIC 1

Strategy Paper on Voice & Chatbots

Contents Index

1. Conversational AI 2

2. Development Background 2

3. Generic Framework of the Bot 3

4. Current Usage of the bot 5

5. Background for RASA(NLU) opensource framework 8

6. Challenges in current opensource RASA(NLU) framework 9

7. Development with architecture change for new model 10

Annexure I – Definitions 12

COE-AI@NIC 2

1. Conversational AI :

Conversational AI in form of virtual assistants, chatbots and voicebots have
gained popularity nowadays, as it is used as a means of augmenting the
system to automate the task of answering user queries that are repetitive in
nature and provides administration support to speed up task completion by
relieving them of such task which can be answered by the system and in the
process bring efficiency for the citizens.

The process of creating a chatbot follows a pattern similar to the development
of a web page or a mobile app. It can be divided into Design, Building,
Analytics and Maintenance.

Designing the corpus for chatbot is the most important work. Automating
Question Answers (QA) is very largely dependent on a good corpus - for
without documents containing the answer, there is little any QA system can
do. It thus makes sense that larger collection sizes generally lend well to better
QA performance. Nuggets of information are likely to be phrased in many
different ways in differing contexts and documents which will help the bot to
train better due to redundancy in the data collected.

The process of Building a chatbot can be divided into two main tasks:
understanding the user's intent and producing the correct answer.

• The first task involves understanding the user input. In order to properly
understand a user input in a free text form, a Natural Language Understanding
Component or NLP Engine can be used, that is trained on varieties of
sentences as input and intents as target.

• The second task may involve different approaches depending on the
type of the response that the chatbot will generate and involves the Dialogue
management component and Middleware to handle business logic and User
Interface for the clients.

2. Development Background:

NIC TDPP (renamed as IVRS, Service Desk Chatbot & Voicebot, later merged
with AI Resource Division) was given the mandate to develop a voice assisted
IVRS to log tickets wrt the Network and associated issues in August 2016. A
speech enabled application with failover in DTMF was demonstrated but was
not found acceptable. Subsequently, DG (NIC) gave the mandate to the
division to work on Natural Language Understanding/Processing (NLU/P)
based voicebot for the upcoming NIC Service Desk. Since there was no proper

COE-AI@NIC 3

training available, NLP based voice -bot could not materialise, even though
extensive work and research was done.

Due to this, text based bots platform were surveyed and Wit.AI was found to
be one such platform which was also available free. Work related activities
progressed, while this platform was found to lack handling of small-talk or
answering vague non related questions and certain features were being
deprecated which is a major requirement of any bot. After evaluating around
25 other bot platforms, API.AI was chosen as it satisfied most of the
requirements and was also available as a free product.

The first version was made available by mid-January 2018 for testing and
evaluation in a limited period of time which was later brought into 24x7
operations by end of January 2018. Further improvements were carried out
and a second version with better NLP understanding and accuracy was
launched in mid-April 2018. As any AI application needs continuous training,
this was also nurtured to give correct response, initially from a dismal 30% to
near 100% accuracy in most cases.

Besides working on the chat based bots, the division also developed a generic
framework for the whole ecosystem, and got it audited and deployed for all
text/voice and mobile voice based bot usage. A PoC for voice based bot and
one on a mobile were also developed and demonstrated to the Hon’ble.
Minister for E&IT when he inaugurated the CoE-AI in early January 2019. The
architecture of the framework is detailed later in this paper.

From the data collected in the text bot for nearly one and half years, a
Statistical Language Model was generated after sufficient cleaning and
scrubbing of the data and used for Automatic Speech Recognition (ASR) of the
spoken problem statement by the user. This was further integrated to the
generic framework and used the same back-end API.AI (Dialogflow) engine to
find the problem classification just like the text bot. A similar case was used
for developing the Mobile app based bot, through which a similar experience
is achieved either by voice/text to raise a ticket.

3. Generic Framework of the Bot:
A generic framework has been developed in-house for the chat /voice/mobile
bot in a layered- modular-pluggable architecture. The framework also has a
Queue manager, monitor and a live human agent handover module. All these
are connected to a front-end JQuery UI which can be plugged into the web
interface running in any of the development frameworks like PHP, JSP, Servlet,
Drupal, ASP.Net, etc.. on MS Windows or any Linux flavours.

COE-AI@NIC 4

 Figure 1 : VANI Conceptual Architecture

The Communication (CO) module does all the back and forth communication
between the business module and the back-end AI engine using individual
OAuth and session IDs for maintaining the privacy of each chat user.

The business logic layer is customised for individual chat/voicebot as the
naming of Intents/action parameters differ from case to case. The business
module hands over the conversation back and forth between the UI and the
Communication (CO) module. On completion of the task assigned, the
business module kicks in the associated layers, disconnecting from the CO
module and may hand-over to the Queue manager or may do some other
tasks like calling a user defined web service for disseminating some requested
information or generate OTP, etc.

The Queue manager, as required, manages the queue for the transfer of chats
to the human agents. The Agents, who are logged in are handed over the
chats with the complete conversation history (the user and the bot
conversation), which help the agent to smoothly continue the conversation
from the point where it was handed over to the agent. The agents have
individual applications installed on their respective desktops, where on getting
a transfer, the screen is brought on top and notifies the agent with visual and
audible warnings of chat transfers.

COE-AI@NIC 5

Using this generic framework, multiple Chat, Voice or mobile App based bots
can interact with the back-end engine and also maintain their own individual
sessions, keeping the privacy of each conversation and handling and meeting
the business requirements, as shown below:

 Figure 2 : VANI Deployment Architecture

4. Current Usage of the bot:
The chatbot for NIC Service Desk(NSD) has been enhanced with FAQ based L1
solutions to common problems for some of the domains where FAQ have
been provided, like eOffice, VC, VPN, server side issues of Antivirus and scaled
down version for eMail. The voice bot for NSD has been enhanced with better
accuracy, approx. 95% or better, after loading all the domain data for the 2019
NSD, approx. 3.5 lakh records and the FAQ data.

Further cleaning of the NSD data is in progress for the years 2017-2018 for all
the domains, the respective FAQs is being augmented with the problem
statements available from NSD. With the available cleaned data from NSD, the
SLM would be trained for even higher accuracy.

COE-AI@NIC 6

Chatbots have also been developed for the following Departments/Ministries
other than the 15 domains covered for NIC Service Desk:

Sr.
No

Department/
Ministry

Brief Functionality Chat Bot Status UAT Status

1 CONFONET,
Consumer Affairs

Provides the case status
for different state
commissions /Benches
and NCDRC

Primary requirements
completed, new
feature requests to be
implemented in next
release

Completed

2 Sarathi-Vaahan,
Ministry of
Transport

Provide information wrt
licenses, fee &
registration

Primary requirements
completed

completed

3 eAwas –
Chandigarh UT

Basic information wrt
eAWAS

Primary requirements
completed

Awaiting
UAT

4 OTG Chennai All info connected with
OTG, like advisories on
open source software,
downloads, OS, etc.
And ticketing of issues

AI part completed,
integration with API
and ticketing engine

To be done

5 DBT-PDS
Puducherry

Info connected with
PDS and DBT from FAQ
as well as regular
intents

Completed staging
awaiting launch

UAT done

6 eVigilance –
Chandigarh UT

General information,
Application status and
some analytical textual
data

Under process Not
completed

7 Sahayak – HP
Govt

Website Navigator with
respect to the Govt of
HP

Initialised, work
started

 Figure 3 : Current BOT Development Status in VANI Framework

 Current Infrastructure:

a) Chatbot - The framework, the associated DB and related services are
currently working from the Meghraj Cloud, NDC, Shastri Park, Delhi. For
scaling up the application framework, a load balanced setup needs to be
setup in the Cloud, with failover/redundant servers at DR location/s.

COE-AI@NIC 7

The Chatbot currently uses the standard free version of Dialogflow APIs for
classification of intents and usage of FAQs for providing L1 support, where
applicable.

Till a suitable AI engine is developed, the Dialogflow APIs need to be used
with the condition that no personal/ID related information is
stored/trained on the engine. Further, if high volume chat transactions or
additional features like Speech, both input/output need to be used, then
enterprise version license needs to be procured. The enterprise version
work on pay-as-you go payment model, with monthly payments, much like
the post-paid telephone billing system.

b) Voicebot - The voicebot uses the Nuance Voice Platform for Automatically
Recognising (ASR) of the spoken inputs by the caller using a Statistical
Language Model (SLM) and associated W3C compliant VXML pages to
deliver the answers using Text-To-Speech (TTS). NIC has procured the
Nuance Voice Platform, hosted on premise, which doubles up as a normal
IVRS with DTMF/Speech recognition inputs as well as a NLP/U based engine
for natural speech inputs.

The perpetual licenses provide ASR for 14 Indian languages and TTS for
Hindi & Indian Accent English. The current product is reaching End-Of-Life
(EOL) on 30th September 2019. The newer version (Nuance Voice platform
Speech Suite 11.04), using better NLP/U capabilities and providing
capabilities for identifying/classifying the intents without any third party AI
engine like Dialogflow, need to be upgraded from the existing one, which is
available only after renewal of the maintenance and support.

COE-AI@NIC 8

5. Background for RASA(NLU) opensource framework :

Opensource RASA provides complete framework to design a context based
chatbot, with conversation context being maintained in form of stories. Only if
there is a change of context midway in user conversation, RASA may not be
able to entertain the same.

RASA framework can be classified in three major parts:
1)RASA NLU: This part is used for identify intents and entity. NLU take two
major inputs files :
a) Configuration file: It contains info regarding tokenization, model used

for intent & entity identification, and model configuration like number
of epochs etc.)

b) NLU model file: It contains intents, intent examples, entity
corresponding to each intent, synonyms for entity, regex for entity
identification.

2)RASA Core: This part is used for conversation. Core maintains the context
and uses NLU module to find intents and entity in the user input. It take
following inputs:
a) Story file: contains all stories which chatbot uses for conversation.
b) Domain file: it is like short summary of entire chatbot. It contains intent

name, entity name, slots, responses and static response messages.
c) Configuration: related to the policies used for the learning the stories

and fallback details.

Dialogue Model: This model is trained on stories we define, based on which
the policy will take the action. There are two ways in which stories can be
generated:

• Supervised Learning: In this type of learning we will create the stories by
hand, writing them directly in a file. It is easy to write but in the case of
complex use-cases, it is difficult to cover all scenarios.

• Reinforcement Learning: The user provides feedback on every decision
taken by the policy. This is also known as interactive learning. This helps
in including edge cases which are difficult to create by hand. You must
be thinking about how it works? Every time when a policy chooses an
action to take, it is asked from the user whether the chosen action is
correct or not. If the action taken is wrong, you can correct the action on
the fly and store the stories to train the model again.

COE-AI@NIC 9

3)RASA SDK: This part is used for performing user defined actions. RASA sdk
runs the actions defined on separate server and execute it as event listener
(triggered from the core side send request for respected action).

6. Challenges in current opensource RASA(NLU) framework :
1) Follow the concepts of story to follow the conversation. Disadvantages

of the story method:
a) Story is like a path followed for the conversation. So, it restricts

the user to follow the restricted paths.
b) Difficult for programmer to develop and manage all stories and

paths.
c) RASA is not able to switch between stories if we suddenly start

another story (even other story is from the start).

2) Intent and Entity are not interdependent in rasa NLU model. This leads
to cases when it identifies correct entities but wrong intents.

Implementation Architecture :
Image shown below is the high level architecture (workflow) of Core part:

 Figure 4 : RASA Conceptual Architecture

COE-AI@NIC 10

7. Development with architecture change for new model :

Proposed Solutions (Approaches):
1.Write short stories instead of end to end stories. In stories write only those
actions together those must be performed.
2.Use concepts of checkpoints in stories to reduce effort. Implement new core
from the scratch which is generic, scalable and reliable.

Problem with Proposed Solutions:

Problem with approach 1:
1. Still all above problem exists only their effects and limitation can be reduced
and there is no fix figure to which this can be reduced as it is all implementer
dependent.

Problem with approach 2:
1. Derive and define complete architecture for the platform. Since, core part
defines behaviour of the chatbot.
2. A number of heuristic decision need to be taken for implementation.
3. Resultant core will be unreliable and take time to mature.

Modifications Required:

For Context Identification:
1. In respect of current rasa intent, there are few changes how to represent
intent in NLU model file. Now, along with intent, provide context for intent
respectively.
2. Context related information (like fallback, slots management for a context
and context forwarding) need to be managed with in core part.

For Conversation:
1) Take user input and pre process it if needed. Find intent and entities

from the input.
2) Change in input format for response corresponding to each intent.
3) Identify the response as per the intent.
4) Prepare the identified response and prepare it to send it as reply

message to user. Currently, following type of response are considered:
a) Static message
b) External executable code
c) Message with slot which can be filled from context data.

COE-AI@NIC 11

5) Extra information regarding context needed to be manage context,
intent and entity.

6) Context and intent history need to be managed for validation of the
system.

For changes of conversation few new files are generated by the system which
contain consolidated information regarding context intent mapping, intent
entity mapping, fallback information, response corresponding to a intent.

Context Identification:
Approach 1) Use single NLU model to identify all context

Approach 2) Use master slave like architecture. Use a global NLU model for
identify context and then in particular context NLU model, identify intent of
the input message.

Both approaches of context management are implemented. Following Points
are observed:
1)When user frequently changes the context in conversation there is slight
increase in response time in approach 2.

2)If two contexts have intent where they have similar input examples then
wrong intent identification chances increase significantly in approach 2.
3)For implementing approach 2 for each context separate threshold need to
be identified and managed.

COE-AI@NIC 12

Annexure – I

 Vocabulary

Word Definition

Intents Things we expect the user to say.

Entities These represent pieces of information
extracted from what user said.

Templates We define some template strings which our bot
can say. The format for defining a template
string is utter_<intent>. These are considered
as actions which bot can take.

Actions List of things bot can do and say. There are two
types of actions we define one those which will
only utter message (Templates) and others
some customized actions where some required
logic is defined.

Slots These are user-defined variables which need to
be tracked in a conversation. For e.g to buy
term insurance, we need to keep track of what
policy user selects and details of the user, so all
these details will come under slots.

